AlMer

Seongkwang Kim ${ }^{3}$ Jincheol Ha ${ }^{1}$ Mincheol Son ${ }^{1}$ Byeonghak Lee ${ }^{3}$ Dukjae Moon ${ }^{3}$ Joohee Lee ${ }^{2}$ Sangyub Lee ${ }^{3}$ Jihoon Kwon ${ }^{3}$ Jihoon Cho ${ }^{3}$ Hyojin Yoon ${ }^{3}$ Jooyoung Lee ${ }^{1}$
${ }^{1}$ KAIST ${ }^{2}$ Sungshin Women's University ${ }^{3}$ Samsung SDS

$$
\text { 2024. 02. } 28 .
$$

Table of Contents

(1) Introduction
(2) Preliminaries
(3) Recap on AIM

4 Change Log from KpqC Round 1
(5) AIM2: Mitigation on AIM Cryptanalysis

(2) Preliminaries

(3) Recap on AIM

4 Change Log from KpqC Round 1
(5) AIM2: Mitigation on AIM Cryptanalysis

MPCitH-based Digital Signature

- ZKP-based digital signature is based on a zero-knowledge proof of knowledge of a solution to a certain hard problem
- For example, finding a preimage of a one-way function
- Efficiency of the ZKP-based signature is determined by choice of one-way function and zero-knowledge proof system
- MPCitH paradigm is to build the ZKP system by simulating an MPC process computing the one-way function
- Characteristics of the MPCitH-based digital signature is:
\checkmark Security relying only on the one-wayness of the one-way function
\checkmark Trade-off between time \& size
\checkmark Small public key and secret key
\checkmark Relatively large signature size and sign/verify time

AlMer Signature

- AIMer: MPCitH-based digital signature based on
- (Ver.1.0) AIM and BN++ proof system
- (Ver.2.0) AIM2 and customized BN++ proof system
- AIM (and AIM2): symmetric primitive based one-way function that fully exploits repeated multiplier technique to reduce a signature size

(2) Preliminaries

4 Change Log from KpqC Round 1
(5) AIM2: Mitigation on AIM Cryptanalysis

ZKP from MPC-in-the-Head

MPC-in-the-Head

Variable	Share					
	Party 1	Party 2	Party 3	Party 4	Party 5	
x	5	6	1	3	9	2
y	10	0	6	7	5	6
z	9	4	1	2	7	1

Example of MPC-in-the-head setting for $N=5$ parties over \mathbb{F}_{11}

- MPC-in-the-head is a Zero-Knowledge protocol by running the MPC protocol in prover's head
- In the multiparty computation setting, $x^{(i)}$ denotes the i-th party's additive share of $x, \sum_{i} x^{(i)}=x$
- N parties have a shares of x, y, and z which satisfies $x y=z$. They wants to prove that $x y=z$ without reveal the value
- N parties and verifier run 5 rounds interactive protocol

MPC-in-the-Head - Toy Example

Phase	Variable	Share					Value
		Party 1	Party 2	Party 3	Party 4	Party 5	
Phase 1	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	$h(5,10,9,7,6,4)$	$h(6,0,4,2,4,6)$	$h(1,6,1,6,3,3)$	$h(3,7,2,2,0,7)$	$h(9,5,7,3,1,7)$	-

Gray values are hidden to the verifier

Phase 1

- N parties generate the shares of the another multiplication triples (a, b, c) which satisfies $a b=c$
- Each party commits ${ }^{1}$ to their own shares and open it
${ }^{1}$ Commit means that keeping the value hidden to others, with the ability to reveal the committed value later

MPC-in-the-Head - Toy Example

Phase	Variable	Share					Value
		Party 1	Party 2	Party 3	Party 4	Party 5	
Phase 1	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	$h(5,10,9,7,6,4)$	$h(6,0,4,2,4,6)$	$h(1,6,1,6,3,3)$	$h(3,7,2,2,0,7)$	$h(9,5,7,3,1,7)$	-
Phase 2			Random chal	enge $r=5$ from	he verifier		

Phase 2

- Verifier sends random challenge r to parties

MPC-in-the-Head - Toy Example

Phase	Variable	Share					Value
		Party 1	Party 2	Party 3	Party 4	Party 5	
Phase 1	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	$h(5,10,9,7,6,4)$	$h(6,0,4,2,4,6)$	$h(1,6,1,6,3,3)$	$h(3,7,2,2,0,7)$	$h(9,5,7,3,1,7)$	-
Phase 2	Random challenge $r=5$ from the verifier						
Phase 3	α	10	10	0	6	4	8
	β	5	4	9	7	6	9
	v	3	9	3	10	8	0

Phase 3

- The parties locally set $\alpha^{(i)}=r \cdot x^{(i)}+a^{(i)}, \beta^{(i)}=y^{(i)}+b^{(i)}$ and broadcast them
- The parties locally set

$$
v^{(i)}= \begin{cases}r \cdot z^{(i)}-c^{(i)}+\alpha \cdot b^{(i)}+\beta \cdot a^{(i)}-\alpha \cdot \beta & \text { if } i=1 \\ r \cdot z^{(i)}-c^{(i)}+\alpha \cdot b^{(i)}+\beta \cdot a^{(i)} & \text { otherwise }\end{cases}
$$

MPC-in-the-Head - Toy Example

Phase	Variable	Share					Value
		Party 1	Party 2	Party 3	Party 4	Party 5	
Phase 1	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	$h(5,10,9,7,6,4)$	$h(6,0,4,2,4,6)$	$h(1,6,1,6,3,3)$	$h(3,7,2,2,0,7)$	$h(9,5,7,3,1,7)$	-
Phase 2	Random challenge $r=5$ from the verifier						
Phase 3	α	10	10	0	6	4	8
	β	5	4	9	7	6	9
	v	3	9	3	10	8	0

Phase 3 (Cont')

- Each party opens $v^{(i)}$ to compute v
- If $a b=c$ and $x y=z$, then $v=0$

MPC-in-the-Head - Toy Example

Phase	Variable	Share					Value
		Party 1	Party 2	Party 3	Party 4	Party 5	
Phase 1	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	$h(5,10,9,7,6,4)$	$h(6,0,4,2,4,6)$	$h(1,6,1,6,3,3)$	$h(3,7,2,2,0,7)$	$h(9,5,7,3,1,7)$	-
Phase 2			Random chal	enge $r=5$ from the	the verifier		
Phase 3	α	10	10	0	6	4	8
	β	5	4	9	7	6	9
	v	3	9	3	10	8	0

Phase 4
Random challenge $\bar{i}=4$ from the verifier

Phase 4

- Verifier sends a hidden party index \bar{i} to parties

MPC-in-the-Head - Toy Example

Phase	Variable	Share					Value
		Party 1	Party 2	Party 3	Party 4	Party 5	
Phase 1	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	$h(5,10,9,7,6,4)$	$h(6,0,4,2,4,6)$	$h(1,6,1,6,3,3)$	$h(3,7,2,2,0,7)$	$h(9,5,7,3,1,7)$	-
Phase 2	Random challenge $r=5$ from the verifier						
Phase 3	α	10	10	0	6	4	8
	β	5	4	9	7	6	9
	v	3	9	3	10	8	0
Phase 4	Random challenge $\bar{i}=4$ from the verifier						
Phase 5	Open all parties except \bar{i}-th party and check consistency						

Phase 5

- Each party $i \in[N] \backslash\{\bar{i}\}$ sends $x^{(i)}, y^{(i)}, z^{(i)}, a^{(i)}, b^{(i)}$, and $c^{(i)}$ to verifier
- Verifier checks the consistency of the received shares

MPC-in-the-Head

- Some agreed-upon circuit $C: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ and some output \mathbf{y}, prover wants to prove knowledge of input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that $C(\mathbf{x})=\mathbf{y}$ without revealing \mathbf{x}
- The single prover simulates N parties in prover's head. Prover first divides the input x_{1}, \ldots, x_{n} into shares $x_{1}^{(i)}, \ldots, x_{n}^{(i)}$
- For each addition $c=a+b, c^{(i)}=a^{(i)}+b^{(i)}$
- For each multiplication $c=a b$, prover divides c into shares $c^{(i)}=c$ then run multiplication check protocol

MPC-in-the-Head - Toy Example

$$
C\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2} \cdot x_{3}\right) \cdot x_{2}=10
$$

Variable	Share					
	Party 1	Party 2	Party 3	Party 4	Party 5	
x_{1}	7	2	1	3	0	2
x_{2}	3	5	10	5	5	6
x_{3}	9	5	9	3	10	3
$x_{2} \cdot x_{3}$	2	4	3	5	4	7
$x_{1}+x_{2} \cdot x_{3}$	9	6	4	8	4	9
$\left(x_{1}+x_{2} \cdot x_{3}\right) \cdot x_{2}$	8	3	0	4	6	10

- Addition is almost free, so that efficiency is highly depend on the number of the multiplications
- Soundness error is proportional to $1 / N$ and $1 /|\mathbb{F}|$

Fiat-Shamir Transform

- Prover derives r and \bar{i} from hash of the data of previous round without interaction. This technique is called Fiat-Shamir Transform
- Using Fiat-Shamir transform, interactive proof can be transformed into non-interactive proof
- Non-interactive zero-knowledge proof of knowledge of x which satisfies $f(x)=y$ for some one-way function f and output y is a digital signature
- Public key: output y
- Private key: input x
(2) Preliminaries
(3) Recap on AIM

4 Change Log from KpqC Round 1
(5) AIM2: Mitigation on AIM Cryptanalysis

AIM - Specification

Scheme	λ	n	ℓ	e_{1}	e_{2}	e_{3}	e_{*}
AIM-I	128	128	2	3	27	-	5
AIM-III	192	192	2	5	29	-	7
AIM-V	256	256	3	3	53	7	5

- Mersenne S-box: $\operatorname{Mer}[e](x)=x^{2^{e}-1}$
- Randomized affine layer: $\operatorname{Lin}(x)=A x+b$
- Repetitive structure

AIM - Design Rationale

Mersenne S-box

- $\operatorname{Mer}[e](x)=x^{2^{e}-1}$
- Only one multiplication is required for its proof $\left(x y=x^{2^{e}}\right)$
- More secure than Inv S-box against algebraic attacks on \mathbb{F}_{2}
- Providing moderate DC/LC resistance

AIM - Design Rationale

Random Affine Layer

- Random affine layer increases the algebraic degree of equations over $\mathbb{F}_{2^{n}}$
- In order to mitigate multi-target attacks, the affine map is uniquely generated for each user's iv

AIM - Design Rationale

Repetitive Structure

- In ZKP-based digital signature, efficiency is highly depend on the number of the multiplications
- In BN++ proof system, when multiplication triples use an identical multiplier in common, the proof can be done in a batched way, reducing the signature size
- AIM allows us to take full advantage of this technique

Algebraic Analysis on AIM

- $y_{i}=\operatorname{Mer}\left[e_{i}\right](x) \Longleftrightarrow x=\operatorname{Mer}\left[e_{i}\right]^{-1}\left(y_{i}\right) \Longleftrightarrow x y=x^{2^{e}}$
- $x \oplus \mathrm{ct}=\operatorname{Mer}\left[e_{*}\right](z) \Longleftrightarrow z=\operatorname{Mer}\left[e_{*}\right]^{-1}(x \oplus \mathrm{ct}) \Longleftrightarrow z(x \oplus \mathrm{ct})=z^{2^{e}}$
- $y_{i}=\operatorname{Mer}\left[e_{i}\right] \circ \operatorname{Mer}\left[e_{j}\right]^{-1}\left(y_{j}\right)=\operatorname{Mer}\left[e_{i}\right]\left(\operatorname{Mer}\left[e_{*}\right](z) \oplus c t\right)$

Algebraic Analysis on AIM

Scheme	\#Var	Variables	$(\#$ Eq, Deg)	Complexity
AIM-I	n	z	$(3 n, 10)$	$2^{300.8}$
	$2 n$	x, y_{2}	$(3 n, 2)+(3 n, 4)$	$2^{214.9}$
	$3 n$	x, y_{1}, y_{2}	$(9 n, 2)$	$2^{222.8}$
AIM-III	n	z	$(3 n, 14)$	$2^{474.0}$
	$2 n$	x, y_{2}	$(3 n, 2)+(3 n, 6)$	$2^{310.6}$
	$3 n$	x, y_{1}, y_{2}	$(9 n, 2)$	$2^{310.8}$
AIM-V	n	z	$(3 n, 12)$	$2^{601.1}$
	$2 n$	x, y_{2}	$(3 n, 2)+(3 n, 8)$	$2^{406.2}$
	$3 n$	x, y_{2}, y_{3}	$(6 n, 2)+(3 n, 4)$	$2^{510.4}$
	$4 n$	x, y_{1}, y_{2}, y_{3}	$(12 n, 2)$	$2^{530.3}$

(2) Preliminaries

(3) Recap on AIM
(4) Change Log from KpqC Round 1
(5) AIM2: Mitigation on AIM Cryptanalysis

Change of Specification

- We enhance the symmetric primitive AIM \rightarrow AIM2 without performance degradation.
- The number of parameter sets are decreased from 4 to 2 . The parameters are distinguished with name " $-s$ " and " -f ".
- Two hash functions with the same input is now integrated: Expand + Commit \rightarrow CommitAndExpand.
- The salt size is now halved: $2 \lambda \rightarrow \lambda$ bits.
- The message to be signed is now pre-hashed.
- Hash functions are now domain-separated.

Other Changes

Implementational Change

- We newly develop a reference code whose readability is significantly enhanced.
- There are now 4 types of source codes available: reference C, optimized C, AVX2, and ARM64.
- AVX2 optimization now enjoys a full parallelization of MPC simulations (30% sign time reduction).
- OpenSSL dependency is removed.
- Memory usage is reduced ($195 \mathrm{~KB} \rightarrow 150 \mathrm{~KB}$ for aimer128f).

Editorial Change

- The security proof (EUF-CMA) now guarantees full-bound security rather than birthday-bound security.
- Detailed specification which corresponds the reference code is now available.

(2) Preliminaries

(3) Recap on AIM

4 Change Log from KpqC Round 1
(5) AIM2: Mitigation on AIM Cryptanalysis

Recent Analysis on AIM

Recent algebraic analysis on AIM:

- Fukang Liu, et al. "Algebraic Attacks on RAIN and AIM Using Equivalent Representations", ToSC 2023.
- Private communication with Fukang Liu.
- Markku-Juhani O. Saarinen. "Round 1 (Additional Signatures) OFFICIAL_COMMENT: AIMER", pqc-forum².
- Kaiyi Zhang, et al. "Algebraic Attacks on Round-Reduced RAIN and Full AIM-III", ASIACRYPT 2023.

There are two vulnerabilities in the structure of AIM.

- Low degree equations in n variables.
- Structural vulnerability: common input to the parallel S-boxes.

[^0]
Low Degree Equations in n Variables

Fast exhaustive search by Fukang Liu. (ToSC 2023)

Scheme	Var	\# Eq	Deg
AIM-I	z	$3 n$	10
AIM-III	z	$3 n$	14
AIM-V	z	$3 n$	12

- Build low degree equations in n Boolean variables.
- Apply fast exhaustive search attack with memory-efficient Möbius transform.

Scheme	n	Brute-Force [bits]	Time [bits]	Memory [bits]
AIM-I	128	$2^{146.3}$	$2^{136.2}(-10.1)$	$2^{61.7}$
AIM-III	192	$2^{211.8}$	$2^{200.7}(-11.1)$	$2^{84.3}$
AIM-V	256	$2^{276.7}$	$2^{265.0}(-11.7)$	$2^{95.1}$

Structural Vulnerability - System with New Variables

Private communication with Fukang Liu.

- $w:=\mathrm{pt}^{-1} \Rightarrow \operatorname{Mer}[e](\mathrm{pt})=\mathrm{pt}^{2^{e}} w$
- $2 n$-variable system having
- $5 n$ quadratic eqs from $w=\mathrm{pt}^{-1}$
- $5 n$ cubic eqs from $\operatorname{Mer}\left[e_{*}\right]$

No practical attack exists on the above system, but it was not considered in the first proposal.

Structural Vulnerability - Efficient Brute-Force Search

NIST official comment on the additional signature by Saarinen.

- $w:=\mathrm{pt}^{-1} \Rightarrow \operatorname{Mer}[e](\mathrm{pt})=\mathrm{pt}^{2^{e}} w$
- $\operatorname{Mer}\left[e_{i}\right](\mathrm{pt})$ can be computed by precomputing the linear matrix for $E_{i}: \mathrm{pt} \mapsto \mathrm{pt}^{2^{e_{i}}}$.
- It might enable faster exhaustive search.

We analyzed the gate-complexity of AIM using this approach and verified that it is still larger than that of AES.

Structural Vulnerability - Linearization Attack

Linearization attack by Zhang et al. (ASIACRYPT 2023)

- $\operatorname{Mer}\left[e_{i}\right](\mathrm{pt})=\left(\mathrm{pt}^{d}\right)^{s_{i}} \cdot \mathrm{pt}^{t^{t_{i}}}$ for some $d \mid 2^{n}-1$.
- Guessing pt ${ }^{d}$ can linearize the first round S-boxes.

Scheme	n	Brute-Force [bits]	d	Time [bits] 3	
AIM-I	128	$2^{146.3}$	5	$2^{146.0}$	(-0.3)
AIM-III	192	$2^{211.8}$	45	$2^{210.4}$	(-1.4)
AIM-V	256	$2^{276.7}$	3	$2^{277.0}$	

${ }^{3}$ It is re-analyzed complexity: https://eprint.iacr.org/2023/1474

AIM2: Secure Patch for Algebraic Attacks

Scheme	λ	n	ℓ	e_{1}	e_{2}	e_{3}	e_{*}
AIM2-I	128	128	2	49	91	-	3
AIM2-III	192	192	2	17	47	-	5
AIM2-V	256	256	3	11	141	7	3

- Inverse Mersenne S-box
- Larger exponents
- Fixed constant addition

Inverse Mersenne S-box with Large Exponents

Scheme	λ	n	ℓ	e_{1}	e_{2}	e_{3}	e_{*}
AIM2-I	128	128	2	49	91	-	3
AIM2-III	192	192	2	17	47	-	5
AIM2-V	256	256	3	11	141	7	3
AIM-I	128	128	2	3	27	-	5
AIM-III	192	192	2	5	29	-	7
AIM-V	256	256	3	3	53	7	5

Inverse Mersenne S-box with large exponents

- $\operatorname{Mer}[e]^{-1}(x)=x^{a}$ where $a=\left(2^{e}-1\right)^{-1} \bmod \left(2^{n}-1\right)$
- One multiplication for its proof $\left(\operatorname{Mer}[e]^{-1}(x)=y \Longleftrightarrow x y=y^{2^{e}}\right)$
- More resistance to algebraic attacks.
- Use larger e to mitigate the fast exhaustive search.

Constant Addition

Fixed Constant Addition

- Differentiate inputs of the S-boxes in the first round.
- Mitigate the structural vulnerability of AIM while maintaining the repetitive structure.

Algebraic Analysis on AIM2

- $t_{i}=\operatorname{Mer}\left[e_{i}\right]^{-1}\left(x \oplus \gamma_{i}\right) \Longleftrightarrow x \oplus \gamma_{i}=\operatorname{Mer}\left[e_{i}\right]\left(t_{i}\right) \Longleftrightarrow\left(x \oplus \gamma_{i}\right) t_{i}=t_{i}^{2^{e}}$
- $x \oplus \mathrm{ct}=\operatorname{Mer}\left[e_{*}\right](z) \Longleftrightarrow z=\operatorname{Mer}\left[e_{*}\right]^{-1}(x \oplus \mathrm{ct}) \Longleftrightarrow(x \oplus \mathrm{ct}) z=z^{2^{e_{*}}}$
- $t_{i}=\operatorname{Mer}\left[e_{i}\right]^{-1}\left(\operatorname{Mer}\left[e_{j}\right]\left(t_{j}\right) \oplus \gamma_{j} \oplus \gamma_{i}\right)$

Algebraic Analysis on AIM2

Scheme	\#Var	Variables	(\# Eq, Deg)	Complexity
AIM2-I	n	t_{1}	$(n, 60)$	-
	$2 n$	t_{1}, t_{2}	$(3 n, 2)$	$2^{207.9}$
	$3 n$	x, t_{1}, t_{2}	$(12 n, 2)$	$2^{185.3}$
AIM2-III	n	x	$(2 n, 114)$	-
	$2 n$	t_{1}, t_{2}	$(3 n, 2)$	$2^{301.9}$
	$3 n$	x, t_{1}, t_{2}	$(12 n, 2)$	$2^{262.4}$
AIM2-V	n	x	$(2 n, 172)$	-
	$2 n$	t_{2}, z	$(n, 2)+(2 n, 38)$	$2^{513.5}$
	$3 n$	t_{1}, t_{2}, t_{3}	$(6 n, 2)$	$2^{503.7}$
	$4 n$	x, t_{1}, t_{2}, t_{3}	$(18 n, 2)$	$2^{411.4}$

AlMer ver. 2.0 with AIM2

Scheme		Keygen (ms)	Sign (ms)	Verify (ms)	Size (B)
aimer128f aimer128s	(ver.1.0)	0.02	0.60	0.53	5904
	(ver.2.0)	0.03	0.42	0.41	5888
	(ver.1. ${ }^{\text {a }}$)	$0.0 \overline{2}$	$4.6 \overline{0}$	4.47	$4 \overline{1} 7 \overline{6}$
	(ver.2.0)	0.03	3.18	3.13	4160
aimer192f	(ver.1.0)	0.03	1.39	1.28	13080
	(ver.2.0)	0.05	1.04	1.03	13056
aimer192s	(ver. $\overline{1} . \overline{0}$)	0.03	$10 . \overline{0} 4$	9.90	9144
	(ver.2.0)	0.05	7.94	7.86	9120
aimer256f	(ver.1.0)	0.08	2.50	2.34	25152
	(ver.2.0)	0.10	2.07	2.03	25120
aimer256s	(ver. 1.0)	$0.0 \overline{8}$	$19 . \overline{9} 3$	$18.6 \overline{8}$	$170 \overline{8} 8$
	(ver.2.0)	0.10	15.26	14.81	17056

- Experiments are measured in Intel Xeon E5-1650 v3 @ 3.50 GHz with 128 GB memory, AVX2 enabled

AlMer ver. 2.0 with AIM2

Type	Scheme	$\|p k\|$ (B)	$\|s i g\|$ (B)	Sign (ms)	Verify (ms)
Lattice-based	Dilithium2	1312	2420	0.10	0.03
	Falcon-512	897	690	0.27	0.04
	HAETAE-120 ${ }^{\dagger}$	992	1474	0.56	0.03
	NCC-Sign-cyclo (ref) ${ }^{\dagger}$	1564	2458	0.24	0.06
MQ-based	MQ-Sign-RR ${ }^{\dagger}$	328441	134	0.05	0.02
Hash-based	SPHINCS ${ }^{+}-128 \mathrm{~s}^{*}$	32	7856	315.74	0.35
	SPHINCS ${ }^{+}$-128f*	32	17088	16.32	0.97
MPCitH-based	aimer128s (ver.2.0)	32	4160	3.18	3.13
	aimer128f (ver.2.0)	32	5888	0.42	0.41

*: -SHAKE-simple
\dagger : performances in CPU cycles are converted into ms

- Experiments are measured in Intel Xeon E5-1650 v3 @ 3.50GHz with 128 GB memory, AVX2 enabled
- A memory-optimized version requires up to 174 KB of memory for all the parameter sets, which fits well into ARM Cortex-M4

Thank you!
Check out our website!

[^0]: ${ }^{2}$ https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0

